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Our gas is just a single atom bouncing classically in a one-dimensional cham-
ber with a moveable piston on one end. We want to know what happens when
the piston pushes in towards the atom. We constructed this thought experiment
to give a kinetic reasoning for the familiar PV = nkT and hope to recover that
equation.
We will denote the speed of the atom by va and its initial speed before

compression by v0. The speed of the piston is vp. The cavity begins at a length
l0 so that the moving piston makes the cavity length l = l0 − vpt at any point
in time.
As the piston compresses, the atom gains velocity by colliding classically

with the piston. In a thermodynamic system, the velocity of the piston would
not matter. The more slowly it moves, the more times the atom will collide so
that the speed of the atom depends only on the cavity length. If the piston speed
is much slower than the atom speed, then the velocity of the atom depends only
on the length of the cavity.
What are P , V , and T for a one-dimensional one-atom gas? Our new equiv-

alent to volume is the cavity length, l. The temperature can be found from the
equipartition of energy
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kBT (1)

where kB is Boltzmann’s constant and m is the atom’s mass. The factor on
the right is only one half because the atom moves in one dimension (three
dimensions, three halves). Solving the above equation for the temperature gives

T =
mv2

kB
. (2)

The last variable of concern is the pressure. Pressure is normally the force per
unit area exerted on the piston. In a two-dimensional gas, pressure would be a
force per unit length. Here, pressure is just the average force the atom exerts
on the piston. We can find an average force by averaging the familiar Newton’s
law

F = ma = m
∆v

∆t
. (3)

During a collision with the piston, the atom velocity changes from +va to −va

for a total change of ∆t = 2va. The total time per collision is the time it takes
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the atom to travel down the chamber and back or t = 2l/va. Our pressure is
then

P = F = m
2va

2l/va
=

mv2
a

l
. (4)

Do these variables, P , V , and T , fit into an equation of state?
(

mv2
a

l

)
· l = 1 · k ·

(
mv2

a

k

)
. (5)

It is exactly PV = nkT where n = 1 for one atom.
We can start from examining the simple kinetic collision and show that, for

a slowly moving piston, the velocity is a function of the cavity length. When
the atom hits the fixed end, it just bounces, but when it hits the compressing
piston, it gains the speed of the piston.

v′a = −va + 2vp (6)

At any point in time, the velocity of the atom is equal to its initial velocity plus
additions from every piston collision

va = v0 + 2
∑

piston hits
vp. (7)

Instead of summing over the number of times the piston hit, we could sum over
the total time and factor in the number of hits per time.

va = v0 + 2
∑
time

vp × hits
time

(8)

The frequency of hits is determined by the atom’s speed and path length

2l = vat ⇒ 1
t
=

va

2l
=

va

2(l0 − vpt)
(9)

We can put this back in the sum to find

va = v0 +
∑

t

2vp
va

2(l0 − vpt)
= v0 +

∫
vpva

(l0 − vpt)
dt. (10)

We can’t do that integral because va = va(t), and it is unknown. We can rewrite
the equation in terms of length using vpdt = dl

va = v0 −
∫ l

l0

va

l
dl (11)

Taking the derivative of both sides gives a tractable differential equation

dva

va
= −dl

l
(12)

2



whose solution is
va

v0
=

l0
l
. (13)

Squaring both sides, we could write it as
(

mv2
a

l

)
· l3 =

(
mv2

0

l0

)
· l30. (14)

Looking above at the definitions for pressure and volume in this system, we see
our relation between cavity length and velocity is equivalent to

PV 3 = constant. (15)

This is not the standard relation for adiabatic compression but is of similar
form.
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