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I can show my understanding of effects, ideas and 
relationships by describing and explaining cases involving: 
the behaviour of ideal gases 

Revision Notes: ideal gas, ideal gas laws  

Summary Diagrams: Boyle's law, density and number of molecules, Changing pressure and 
volume by changing temperature, One law, summarising empirical laws 

 

the kinetic theory of ideal gases 

Revision Notes: assumptions of kinetic theory of gases  

Summary Diagrams: Constructing a model of a gas 

 

absolute (Kelvin) temperature as proportional to the average energy per particle, with average 
energy ≈ kT as a useful approximation 

Revision Notes: internal energy 

Summary Diagrams: The kinetic energy of a single particle 

 

energy transfer producing a change of temperature (in gases, liquids and solids) 

Revision Notes: specific thermal capacity, conservation of energy  

Summary Diagrams: Transferring energy to molecules 

 

Random walk of molecules in a gas; distance gone in N steps related to N  

Revision Notes: Brownian motion, random processes, random variation 

Summary Diagrams: Bromine diffusing, Random walk 

 

 

I can use the following words and phrases accurately when 
describing effects and observations: 
absolute temperature 

Revision Notes: absolute temperature 

 

ideal gas 

Revision Notes: ideal gas 

 

root mean square speed 

Revision Notes: root mean square speed 

Summary Diagrams: The speed of a nitrogen molecule 

 

internal energy 

Revision Notes: internal energy, thermal properties of materials, specific thermal capacity 
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I can sketch, plot and interpret: 
graphs showing relationships between p, V and T for an ideal gas 

Revision Notes: ideal gas laws 

Summary Diagrams: Changing pressure and volume by changing temperature, One law, 
summarising empirical laws 

 

 

I can make calculations and estimates involving: 
the universal gas law equation pV = NkT where N =nN A and Nk = nR ; number of moles n and 
Avogadro constant N A 

Revision Notes: ideal gas laws, the mole and Avogadro number 

Summary Diagrams: Boyle's law, density and number of molecules, Changing pressure and 
volume by changing temperature, One law, summarising empirical laws 

 

the equation for the kinetic model of a gas: 2
3
1 cNmpV =  

Revision Notes: assumptions of kinetic theory of gases, root mean square speed 

Summary Diagrams: Constructing a model of a gas, Boltzmann constant and gas molecules, 
The kinetic energy of a single particle, The speed of a nitrogen molecule 

 

temperature and energy change using ΔE = mcΔθ 

Revision Notes: specific thermal capacity 

Summary Diagrams: Transferring energy to molecules 
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Revision Notes 
Back to list of Contents  
 

Ideal gas 
An ideal gas is an abstraction from the fact that many real gases have closely similar 
behaviour, in particular that the ratio p V / n T (where n is the number of moles of gas present) 
is very nearly the same for all of them at sufficiently low pressure and high temperature. This 
ratio is called the gas constant R. 
 
An ideal gas obeys the ideal gas law: NkTpV =  (where N is the number of molecules of gas 
and k is the Boltzmann constant). As the pressure is reduced and the temperature raised, real 
gases approximate more and more closely to this behaviour.  
 
Comparing the two equations above shows that Nk = nR.  For 1 mole, n = 1 and N = NA the 
Avagadro constant.  Thus R = NA k. 
 
Departure from ideal gas behaviour occurs at high pressures because the volume of the 
molecules is then a significant fraction of the measured volume, thus reducing the effective 
volume available for the molecules to move in. Departures occur at low temperatures 
because the molecules then move slowly enough to be significantly affected by attractions 
between themselves, thus reducing the gas pressure.  
 
The idea of an ideal gas is also valuable because there is a simple model to explain ideal gas 
behaviour. This is the kinetic theory of gases. 
 
Back to Revision Checklist  
 

 

Ideal gas laws 
The ideal gas laws are experimental laws relating the pressure p, volume V, temperature T 
and number n of moles of a gas. 
 
 
Boyle's law: p V = constant for constant n and T. 
 
p

O

T2>T1

T1

Boyle’s law
1
V  
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Charles' law: V / T = constant for constant p and T. 
 
V

O T

p2>p1

p1

Charles’ law  
 
 
The pressure law: p / T = constant for constant n and V. 
 
p

O

V2>V1

V1

T

The pressure law  
 
 
These laws can be combined into the general ideal gas law  
pV =NkT where N is the number of molecules and k is the Boltzmann constant. 
 
This can also be written as pV = nRT where n is the number of moles, and R = NAk is the 
molar gas constant, with NA the number of molecules per mole (Avogadro number).   
 
The value of R is 8.3 J mol–1 K–1, calculated from the fact that an ideal gas at 273 K and a 
pressure of 101 kPa has a molar volume Vm = 0.0224 m3

 (or 22.4 litre). 
 
Back to Revision Checklist  
 

 

Assumptions of kinetic theory of gases 
The kinetic theory of gases explains the behaviour of a gas as due to the motion of its 
molecules.  
 
The theory is based on the following assumptions: 
 
1. A gas consists of molecules of negligible size. 

2. The molecules collide elastically with each other and the container, on average gaining or 
losing no energy. 

3. The molecules are in continual random motion. 

4. There are negligible forces of attraction between the molecules. 

5. The duration of an impact is much less than the time between impacts. 
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Using these assumptions, the ideal gas relationship NkTpV =  can be derived. The pressure 
of a gas is explained as due to the bombardment of the walls of its container by molecules 
colliding with and rebounding from the walls. See Summary Diagrams: Constructing a model 
of a gas  for the argument in outline. 
 
The kinetic theory gives, for the pressure p of volume V of an ideal gas: 

.2
3
1 cNmpV =  

where: 
 
N is the number of molecules 
m is the mass of a molecule 

2c  is the mean of the squares of the molecular speeds 

 
Back to Revision Checklist  
 

 

Internal energy 
The internal energy U of a number N of molecules of an ideal monatomic gas is NkTU 2

3= , 
where T is the absolute temperature of the gas and k is the Boltzmann constant. 

If the temperature of an ideal monatomic gas increases by ΔT, with no change of volume so 
that no work is done, the internal energy changes by 

TNkU Δ=Δ 2
3  

Internal energy is the scientific term that replaces what in everyday speech is called the 'heat' 
in a body. The term 'heat' is reserved to mean the thermal flow of energy under a temperature 
difference. See Summary Diagrams: Transferring energy to molecules 
 
Back to Revision Checklist  
 

 

Specific thermal capacity 
The specific thermal capacity of a material is the energy needed to raise the temperature of 
unit mass (i.e. 1kg) of material by 1 K. 

The SI unit of specific thermal capacity is J kg–1 K–1. The unit of molar thermal capacity is J 
mol–1 K–1. 

To change the temperature of mass m of material from T1 to T2, the energy transfer to or from 
the material = m C (T2 – T1), where C is the specific thermal capacity of the material. 

In the case of an ideal monatomic gas, the mean energy of a molecule is kT2
3 , so to raise 

the temperature of a gas of N molecules by ΔT requires energy TNkΔ2
3 . Thus the thermal 

capacity per mole, for heating at constant volume, is kNA2
3 .  

Materials differ in molar thermal capacity because their particles are capable of storing energy 
in several different ways, for example rotation and vibration as well as translation. At high 
enough temperatures, the energy is shared out equally amongst all these modes. 
 
Back to Revision Checklist  
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Conservation of energy 
Imagine a closed boundary drawn around any set of objects, large or small. In a given time, 
energy may enter across the boundary and energy may leave across the boundary. The 
Principle of Conservation of Energy states that the change in energy within the boundary is 
always exactly equal to the difference between that entering and that leaving. Energy is never 
manufactured or destroyed. 
 
The SI unit of energy is the joule. 
 
There are two basic means of measuring the amount of energy passed from one part of a 
system to another. Work done, equal to the force acting multiplied by the component of the 
displacement in the direction of the force.  
 
Energy is also transferred from one place to another by thermal flow, in which no work is 
done, but when energy flows spontaneously across a temperature difference.  
 
Thus internal energy can change in two distinct ways. Work W can be done on the system, 
and there may be thermal transfer Q of energy.  

QWU +=Δ  
 
This is the First Law of Thermodynamics. See Summary Diagram: Transferring energy to 
molecules 
 
Back to Revision Checklist  
 
 

Brownian motion 
Brownian motion is the random jittering motion of small particles of matter suspended in a gas 
or in liquid. Each particle is bombarded haphazardly and unevenly by fast moving molecules. 

Brownian motion is seen when smoke particles in air, or fragments of pollen grains in water, 
are observed using a microscope. These particles are of the order of a micrometre or less in 
size and are continually bombarded by fast moving air or water molecules too small to see. 
Because the bombardment is uneven and random, each particle is pushed by the average 
force of impacts in a direction which changes continuously at random. This unpredictable 
motion is increased if the temperature of the liquid or gas is increased as the molecules move 
faster on average so the impacts are greater and more frequent. 
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Brownian motion

light

smoke cell

glass cover

microscope

arrangement

microscope view

smoke particle path

 
 
The average distance traveled in N steps is of the order √N steps. 
 
Back to Revision Checklist  
 

 

Random processes 
Random processes occur where individual changes or events cannot be predicted in detail, 
but only on average. Such processes are important in the theory of radioactive decay and in 
the kinetic theory of gases. 

A random process is a change or an event with one or more outcomes, including no change, 
that can occur with a certain probability in a given time interval. 

The statistical outcome of a very large number of random changes or events is very 
predictable. 

Radioactive decay of an unstable isotope 
The decay of an unstable nucleus is a random event. Each unstable nucleus is as likely to 
disintegrate in a given time interval as any other unstable nucleus of the isotope. Thus the 
probability of the decay of a nucleus in a certain time interval is the same for any nucleus. 

Hence, for N unstable nuclei, the number of nuclei  δN that disintegrate in a short time interval 
δt is proportional to N and to δt, that is δN is proportional to N δt. 
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Introducing a constant of proportionality λ, the decay constant, gives δ N = –λNδt, where the 
minus sign indicates a decrease of the number of nuclei with increase of time. 

The decay constant λ is therefore equal to the fraction of nuclei that decay per unit time. That 
is 

 
t
NN

δ
δ

−=λ
/  

equal to the probability of decay per unit time. 

The above equation gives 

N
t
N

λ−=
δ
δ  

which becomes 

N
t
N

λ−=
d
d  

in the limit δ t → 0. 

The solution of the differential equation above is 

tNN λ−= e0  

where N0 is the initial number of unstable nuclei present. 

Random walk 
A molecule in a gas collides randomly and frequently with other molecules. Thus it changes 
direction frequently, taking a complicated zig-zag path. The average displacement on such a 
path is zero. But the root mean square distance travelled is √N x the step length if the total 
zig-zag path contains N steps. 

Typically a gas molecule at ordinary temperatures and pressures makes steps of the order 
10-7 m between collisions, colliding about 109 times each second. Thus in 1000 seconds (a 
quarter of an hour) it will make N = 1012 steps in a zig-zag path of total length 105 m. In the 
same time, the root mean square distance travelled from its starting point will be of the order 
106 x 10-7 m = 0.1 m. This is typical of the distance through which molecules of a gas diffuse 
in several minutes. 

Similarly, the number N of counts that occur in a given time, in a random process such as 
radioactive decay, will fluctuate. It is likely to vary above or below the value N by an amount 
equal to √N. The fractional variation expected is of the order (√N) / N, which equals 1/(√N) 
and gets smaller as N increases. 

Back to Revision Checklist  
 

 

Random variation 
Random variation has to do with small unpredictable variations in quantities, for example 
electrical noise. Some variations in experimental results may appear to be random. 

Random events are such that the occurrence of one such event predicts nothing about the 
occurrence of another. Truly random variation may be rather rare. It does appear to arise in 
quantum phenomena, where only the probability of events can be calculated. Random 
electrical noise is a practical example. However, variations due to a number of minor and 
unrelated causes often combine to produce a result that appears random. Values vary 
unsystematically, and in no obvious sequence. Because there are well-established statistical 
ways of dealing with random variation, variations in measurements are often treated as if they 
were random, despite lack of evidence that they really are random. 
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In measurement, when accidental variations with known or suspected causes have been 
eliminated, systematic error has been allowed for, and no trends in the variations appear, 
variations of measurements around a central value are often treated as random. 

The range within which the value of a quantity may reasonably be believed to lie may be 
reduced somewhat by making many equivalent measurements, and averaging them. If there 
are N independent but equivalent measurements, each with an estimated uncertainty, then 
the uncertainty of the mean of N values is smaller than the uncertainty of a single value by the 
factor √N. 

Radioactive decay is a random process. This is why repeated counts using a Geiger tube at a 
fixed distance from a radioactive source with a long half-life give measurements that vary at 
random. The probability of arrival of a count within any short period of time is fixed, regardless 
of the time since the last count arrived. Repeated counts taken over a fixed period of time 
show a distribution of the number of counts arriving in that time. The distribution is called the 
Poisson distribution. The most frequent number of counts in a fixed time is simply the long run 
average of counts in that time. If this average is N counts, the number of counts in the fixed 
time varies typically by ± √N. 

We can expect about 70% of equivalent readings to lie within the range from N – √N to N + 
√N. To reduce the uncertainty in a set of observations to less than 5%, the number of counts 
should be over 400, corresponding to √N / N = 0.05. For an uncertainty of less than 1%, the 
number of counts should be more than 10 000, corresponding to √N / N = 0.01.  

 

Poisson distribution

count N

range N +  N–

N

N

 
 
Back to Revision Checklist  
 

 

Absolute temperature 
Temperature indicates how hot an object is. Energy flows spontaneously from hotter things to 
colder things. It is this fact which underlies the everyday notion of 'hotness'. 
 
The Celsius scale of temperature in °C is defined in terms of: 
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1. Ice point, 0 °C, which is the temperature of pure melting ice. 

2. Steam point, 100 °C, which is the temperature of steam at atmospheric pressure. 

 
The absolute scale of temperature, in kelvin (K), is defined in terms of two fixed points: 
 
1. Absolute zero, 0 K, the lowest possible temperature. 

2. The triple point of water, approximately 273 K, which is the temperature where three 
phases of water – liquid, solid and gas – co-exist in equilibrium. 

 
By assigning the exact value of 273.16 K to the triple point of water, the interval between ice 
point and steam point is 100 K, hence (to 3 significant figures): 
 
Absolute temperature in K = temperature in °C + 273. 
 
The mean kinetic energy of the particles of a monatomic ideal gas at absolute temperature T 
is equal to kT2

3 , where k is the Boltzmann constant. In general, at sufficiently high 
temperatures, the energy per particle in any material is some small multiple of kT. 
 
Back to Revision Checklist  
 

 

Root mean square speed 
The speeds of molecules in a gas vary around an average value. The distribution of speeds of 
molecules in nitrogen at 300 K is shown below. 
 

0.10

0.08

0.06

0.04

0.02

0.00

speed in metre per second

most probable
speed

mean speed

root mean
square speed

 
 
The peak of the distribution, the most probable speed, is at 422 m s–1. The mean speed is a 
little larger, 476 m s–1. 
 
The kinetic theory predicts the total translational kinetic energy of the molecules: 

NkTmvmvmv N 2
32

2
12

22
12

12
1 .... =++  

Thus the average of the squares of the speeds is equal to 
m
kT3   
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The square root of the mean square speed is called the ‘root mean square speed’. In the case 
of nitrogen at 300 K it is 517 m s–1.  
 
Back to Revision Checklist  
 

 

Thermal properties of materials 
The thermal properties of a material describe how it responds to changes in temperature. 

The thermal properties of materials include: 

1. Specific thermal capacity, which is the energy needed to raise the temperature of unit 
mass of material by one degree. 

2. Specific latent heat for a given change of phase, which is the energy needed to change 
unit mass of material, without change of temperature, for example from liquid to vapour. 

3. Thermal expansion which is the change of length of a solid per unit length per unit change 
in temperature. 

4. Thermal conductivity which is the energy conducted per unit cross-sectional area through 
a substance per unit temperature gradient normal to the area. 

There is energy stored inside a lump of matter. Much of this is the energy of random thermal 
agitation of its atoms, ions or molecules, including kinetic energy of motion of particles and 
potential energy arising from forces between them. There may also be energy the particles 
have because the material is magnetised, for example. The higher the temperature, the 
greater the energy randomly dispersed amongst the particles. If the energy per particle is 
large enough, bonds begin to be broken so that, for example the substance may change 
phase from solid to liquid to vapour, or to atoms may begin to disassociate into ions and 
electrons.  

To raise the temperature of mass m of a substance from T1 to T2,the energy needed Δ E = m 
C (T2 – T1), where C is the specific thermal capacity of the material. The unit of C is J kg–1 K–1 
or J mol–1 K–1. 

The energy ΔE needed to melt mass m of a substance, without a change in temperature is ΔE 
= mL, where L is the specific latent heat of fusion. There are similar latent heats of 
evaporation and sublimation when a liquid or solid becomes a vapour. The unit of L is J kg–1 
or J mol–1. 

When the temperature of a solid or a liquid increases, the particles vibrate with increased 
amplitude. If the vibrations were purely harmonic, their mean positions would not change 
because the oscillations are symmetrical. But if the vibrations are unsymmetrical 
(anharmonic) the increased amplitude may lead to a small increase in the average distance 
between particles. This is why most materials expand on heating, but is also why this 
expansion is rather small. The increase in length or volume is often approximately 
proportional to the temperature change. 

Thermal conduction is the flow of energy under a difference of temperature. 

1. The temperature gradient between any two points is the temperature difference between 
the two points divided by the distance between them. The unit of temperature gradient is 
K m–1. 

2. Heat transfer takes place along a temperature gradient. For a sample of material of length 
L and cross-sectional area A, the energy transfer Q in time t along the length of the 
sample is proportional to the temperature gradient, and is given by the equation 

 L
TTkA

t
Q )( 21 −

=
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 where T1 is the temperature at the hot end of the sample, T2 is the temperature at the 
cooler end and k is the thermal conductivity of the sample. 

The unit of thermal conductivity k is W m–1 K–1. 

 

Temperature gradient

0
T2

T1

L

temperature gradient =
T1 T2–

L

distance from
hot end

T2 (<T1)T1 thermal flow of energy
insulation

insulation

 
 
The above equation is analogous to the electrical equation 

L
VAσ=I

 
for the current I through a conductor of uniform cross-sectional area A and length L when a 
potential difference V is applied across its ends. Thermal conductivity k and electrical 
conductivity σ are in this way analogous. 

Relationships 
1. Specific thermal capacity: Δ E = m C (T2 – T1)  

2. Specific latent heat: Δ E = m L. 

3. Thermal expansion: Δ L = α L (T2 – T1). 

4. Thermal conductivity: 

L
TTkA

t
Q )( 21 −

=   where T1 > T2. 

 
Back to Revision Checklist  
 

 

The mole and Avogadro number 
Atoms and molecules are counted in moles where 1 mole is defined as the number of atoms 

present in exactly 12 g of C12
6  (carbon 12). Carbon-12 is chosen as a reference because it 

can be separated easily from the other carbon isotopes. 
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The number of atoms in 12 g of carbon-12 has been measured accurately and is equal to 
6.02 × 1023. This number is referred to as the Avogadro constant (symbol NA). Thus n moles 
of substance consisting of identical particles contains n NA such particles. 

The molar mass M of a substance is the mass of NA particles of the substance. Thus the 
mass of one particle of the substance of molar mass M is equal to M / NA. 

1 atomic mass unit (u) is defined as one-twelfth of the mass of a carbon-12 atom. A carbon-
12 atom has a mass which is equal to 2.0 × 10–23 g (= 12 g / NA).  

Hence 1 u = 1/12 × 12 g / NA = 1/ NA in grams = 1.66 × 10–24 g = 1.66 × 10–27 kg.  

Because the mass of a proton and of a neutron are both approximately equal to 1 u, the mass 
number of an isotope is therefore approximately equal to the mass in grams of one mole of 

the atoms of that isotope. For example, a nucleus of U238
92  (uranium-238) consists of 238 

neutrons and protons and therefore has a mass of approximately 238 u. Hence the mass of 
NA uranium 238 atoms is approximately 238 g or 0.238 kg.  

The number of atoms or molecules in mass m of an element or compound of molar mass M is 
equal to the number of moles (m / M) × the number of particles per mole NA. This type of 
calculation is used in radioactivity calculations where the number of atoms in a radioactive 

isotope has to be determined. For example, the number of atoms in 1 kg of U238
92  (uranium-

238) is (1 / 0.238)NA. 

Relationships 
The number of atoms or molecules in mass m of an element or compound of molar mass M is 
equal to (m / M)NA. 
 
Back to Revision Checklist  
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Summary Diagrams 
Back to list of Contents  
 

Boyle’s law, density and number of molecules 
 
Boyle’s law and gas density

Boyle’s law:
compress gas to half volume:
double pressure and density

half as much gas in half volume:
same pressure and density

double mass of gas in same volume:
double pressure and density

Boyle’s law says that gas pressure is proportional to density

temperature constant in each case

pressure p

2

34

1

volume V
mass m
density d

pressure p

2

34

1

volume V/2
mass m
density 2d

push in
piston

pressure 2p
2

34

1

volume V/2
mass m/2
density d

volume V
mass 2m
density 2d

pump in
more air

pressure 2p2

34

1
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Boyle’s law and number of molecules

Two ways to double gas pressure

molecules in box :
pressure due to impacts
of molecules with walls
of box

piston squashes up same molecules into
half the volume, so doubles the number per
unit volume

add extra molecules to double the number,
so double the number per unit volume

If pressure is proportional to number of impacts
on wall per second

and if number of impacts on wall per second is
proportional to number of molecules per unit
volume

Then pressure is proportional to number of
molecules per unit volume

p = constant   N /V

p = constant   N/V

Boyle’s law in two forms

Boyle’s law says that pressure is proportional to  crowding of molecules

pressure proportional to 1/volume
p   1/V

pressure proportional to number of molecules
p   N

squash the gas
decrease V increase N

cram in more molecules

N  molecules in volume V

pV = constant   N

2N molecules in volume V
number of molecules per
unit volume
number of impacts on wall
per second
pressure

same:
N molecules

in volume
V/2

 
 
Back to Revision Checklist  
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Changing pressure and volume by changing temperature 
 
Pressure and volume of gases increasing with temperature

Pressure and volume extrapolate to zero at same temperature –273.16  C
So define this temperature as zero of Kelvin scale of temperature, symbol T

Constant  volume

heat gas:
pressure
increases

T/ C

pressure p

4 5 .1

Constant pressure

heat gas:
volume
increases

T/ C

4 5.1

–273 0
temperature/ C

–273 0
temperature/ C

2730
temperature/K

2730
temperature/K

pressure proportional to Kelvin temperature volume proportional to Kelvin temperature

Pressure and volume are proportional to absolute temperature

p   T V   T

2

34

1

volume V

 
 
Back to Revision Checklist  
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One law, summarising empirical laws 
 
One law for all gases

2

34

1

volume V

Boyle’s law

pressure p

compress  gas:
pressure p increases
constant temperature T

2

34

1

number N

Amount law

pressure p

add more molecules:
pressure p increases
constant temperature T

2

34

1

Pressure law

pressure p

heat gas:
pressure p increases
constant volume V

T /K

45 .1

volume V

Charles’ law

heat gas:
volume V increases
constant pressure p

T /K

45 .1

p   1/V

p    N

p   T

V   T

Combine the
relationships into one

p   N/V

pV   N
or

pV   NT
introduce
constant k:

pV   NkT

combine:

combine:

Combine unknown N
and k into measurable
quantity R

Number of molecules
N not known
constant k not known

Nk can be measured:
Nk = pV/T
For one mole, define
R  = NAk

For n  moles:
pV = nRT

pV   T

k = Boltzmann constant
NA = Avogadro number
(number of molecules per mole)
R = molar gas constant
   = 8.31 J K –1 mol–1

measured from pV/T for one mole

When NA could  be m easured:

Avogadro nu mber NA =  6.02   102 3 partic les mol–1

R =  molar gas constant =  NAk =  8.31 J K –1 mol–1

Boltzmann constant k = 1 .38   10–23  J K  –1

combine:

4

5
0

1

2
3

  105

N m–2

For N molecules pV = NkT. For n moles, N = nNA and pV = nNAkT = nRT.  
 
Back to Revision Checklist  
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Constructing a model of a gas 
 
Kinetic model of a gas

Use change of momentumTo start: one molecule in a box

z
x

v y

round trip-time between collisions  t = 2x /v

collisions per second = v /2x

end wall of box

momentum +mv before

momentum –mv after

impulse on wall

wall has change in
momentum +2mv

ball has change in
momentum –2mv

momentum 2mv given to wall at each collision

Force = rate of change of momentum
force on wall =
momentum per collision   collisions per second

force on wall = mv2/x

2mv v/2x

impulse each time molecule returns

force

time

 t

z
x

y

Calculate pressure = force on wall /area of wall

force on wall = mv2/x

pressure = mv2/xyz

pressure p = mv2/V

(area = yz)

(V = xyz)

force

time
N times as many collisions per second

N molecules pressure p = Nmv2/V

area of wall = yz

xyz = volume V

pressure p

add many molecules all doing the same improve model

force

time
1/3 as many collisions per second1/3 of molecules

in each direction,
on average

force

time

pressure p =    Nmv2/V

average impulse stays the same

take average
over v2

improve model

pressure p =    Nmv2/V

allow molecules to move in random directions improve model

allow molecules to move at random speeds

1
3

1
3

The kinetic theory of gases predicts that pV =     Nmv21
3
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Boltzmann constant and gas molecules 
 
Kinetic energy of gas molecules and the Boltzmann constant

compare these

Kinetic model

pV =    Nmv2

Gas laws

pV = NkT

One molecule Many molecules

  mv2 =    kT1
2

3
2

kinetic energy per
molecule =    kT3

2

  Nmv2 =     NkT1
2

total kinetic energy of
molecules =    NkT3

2

3
2

mv2 = 3kT

total kinetic energy of
one mole of
molecules U  =    RT3

2

Internal kinetic energy
of molecules of one
mole at T = 300 K

Boltzmann constant k

random thermal
energy of one
molecule is of order
kT

1
3

U =    RT3
2

U = 3.7 kJ mol–1

for one mole
N = NA
R = NAk
R = 8.31 J K–1 mol–1

Average kinetic energy of a molecule = 3
2 kT
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The kinetic energy of a single particle 
 
Looking at the kinetic energy of a single particle

Starting points

From the kinetic theory From experimental work with gases

P: pressure of the gas
V: volume of the gas
N: number of molecules
m: mass of one molecule
v2: mean square velocity

P: pressure of the gas
V: volume of the gas
n: number of moles
T: temperature of gas
R: universal gas constant

Note similaritiesrearrange

P = 3
Nmv2

V
1

PV = 3 Nmv21

PV = 2
N

 ( 2 mv2 )1
3

rearrange

PV = nRT

Ek = 1 mv2
2

PV = 
2N

 ( 2 mv2 )1
3

 N

PV (mol–1) = 2 (Ek)3

Work with one mole

PV (mol–1) = RT

 n

(Ek) = RT2
3
rearrange

Ek =    RT3
2

Ek =    kT3
2

define, k, Boltzmann’s constant =
R
N

Boltzmann’s constant,
k = 1.38 × 10–23 J K–1

For one
molecule

This is the energy for one
molecule, no matter what
it is, depending only on
temperature, and a
universal constant.

Something measured about
the Universe, turning out to
be important

.. ..
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Transferring energy to molecules 
 
Transfers of energy to molecules in two ways

Hit the molecules yourself

molecules speeded up piston pushed in

work done = force   distance

Let other molecules hit them

cool gas or other material hot wall

thermal transfer = mc   

when both ways are used:

Energy can be given to molecules by heating and by doing work

change in internal energy  U

work done W plus thermal transfer  Q
=

Here the piston strikes molecules and gives extra
momentum and so extra kinetic energy.

energy transferred = work W  done

Here the molecules in the hot wall hit other molecules
hard and on average give them extra kinetic energy.

energy transferred = energy Q  transfer red thermally

 U = W + Q
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Bromine diffusing 
 
Evidence for moving molecules

Bromine expanding into a vacuum

remove air from
tube using vacuum
pump

attach bromine
capsule in
sealed tube:
break capsule

open tap:
bromine
instantly f ills
whole tube

to vacuum
pump

tap opentap closed

bromine

vacuumair in tube bromine in tube

attach bromine
capsule in
sealed tube:
break capsule

tap closed

air in tube

Bromine diffusing into air

bromine

bromine very
gradually
diffuses up
the tube

tap open

bromine diffuses into tube

Diffusion shows that molecules move. Rapid diffusion into a vacuum demonstrates high molecular speeds
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Random walk 
 

Total distance X travelled in N steps

Simplified one-dimensional random walk

Rule: a particle moves one step at a time, with equal probability to the right or left

Notation: let the steps be x1,x2,x3 etc. with each x equal to +1 or –1

X = (x1 + x2 + x3 + ... + xi + ...xN)

Expected value E(X) of X

Variation of X around the expected value

r = X – E(X)
Departure r from expected value is:

E (r2) = E (X2)

E(X) = (0)

Since E(X) = 0

Expected value of r2

E (r2) = E (X2)

= E (x1 + x2 + x3 + ... + xi + ...xN)2

The expected value of r is zero. But
the expected value of r2 is not zero.
Since E(X) = 0 the expected value
of r2 is the same as the expected
value of x2

squared terms:

x1
2 + x2

2 + x3
2 + ... + x i

2 + ...xN
2

this contains N terms
each equal to +1
expected value = N

(+1)2 = +1
(–1)2 = +1

mixed terms:

x1x 2 + x1x3 + ... + x ix j  + ...

this contains
N(N–1) terms
each equally
likely to be
+1 or –1

(+1)   (+1) = +1
(+1)   (–1) = –1
(–1)   (+1) = –1
(–1)   (–1) = +1

The result is simple:
 mean square variation

E (r2) = N
root mean square variation

  =   N

Each step is equally likely to be +1
or –1.  Thus, on average, over many
random walks, the total distance will
add up to zero.

When mulitiplied out this
gives two types of term:

expected value = 0
compare (a + b)2 = a2 + ab + ba + b2

Root mean square distance travelled in random walk =  N  
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The speed of a nitrogen molecule 
 
Speed of a nitrogen molecule
Assume warm room temperature T = 300 K

mass of 1 mole of N2 = 28   10–3 kg mol–1

Avogadro constant NA = 6   1023 particles mol–1

Boltzmann constant k = 1.38   10–23 J K–1

kinetic energy of a molecule

from dynamics from kinetic model

  mv21
2

  kT3
2v2 =  3 kT

m

mass m of N2 molecule calculate speed

v = 500 m s–1 approximately

Air molecules (mostly nitrogen) at room temperature go as fast as bullets

m =   
 mass of 1 mole of N2
Avogadro constant NA

m =

m = 4.7   10–26 kg

v2 =   
 3   1.4   10–23 J K–1    300 K

4.7   10–26 kg

v2 = 2.7   105 J kg–1         [Jkg–1 (m s–1)2]28   10–3 kg mol–1

6   1023 mol–1

 
 
NB: The speed calculated here is the root mean square speed. 
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