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I can show my understanding of effects, ideas and 
relationships by describing and explaining cases involving: 
capacitance as the ratio C = Q / V 

the energy stored on a capacitor: 
QVE 2

1=  

Revision Notes: capacitance 

Summary Diagrams: Analogies between charge and water, Energy stored by a capacitor 

 

decay of charge on a capacitor modelled as an exponential relationship between charge and 
time, with the rate of removal of charge proportional to the quantity of charge remaining: 

RC
Q

t
Q

−=
d
d  

Revision Notes: exponential decay processes, differential equation 

Summary Diagrams: Analogies between charge and water, Exponential decay of charge 

 

radioactive decay modelled as an exponential relationship between the number of undecayed 
atoms, with a fixed probability of random decay per atom per unit time  

N
t
N

λ−=
d
d

 
Revision Notes: exponential decay processes, differential equation 

Summary Diagrams: Smoothed out radioactive decay, Radioactive decay used as a clock, 
Half-life and time constant 

 

simple harmonic motion of a mass m subject to a restoring force F = –kx proportional to the 
displacement: 

x
m
k

t
x

−=2

2

d
d

 
Revision Notes: harmonic oscillator, simple harmonic motion, differential equation 

Summary Diagrams: A language to describe oscillations, Snapshots of the motion of a simple 
harmonic oscillator, Graphs of simple harmonic motion, Step by step through the dynamics  

 

energy (1/2)kx2 stored in a stretched spring 

changes of kinetic energy (1/2)mv2 and potential energy (1/2)kx2 during simple harmonic 
motion 

Revision Notes: simple harmonic motion 

Summary Diagrams: Elastic energy, Energy flow in an oscillator 

 

free or forced vibrations (oscillations) of an object 

damping of oscillations 

resonance (i.e. when natural frequency of vibration matches the driving frequency) 

Revision Notes: resonance and damping 
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Summary Diagrams: Resonance 

 

I can use the following words and phrases accurately when 
describing effects and observations: 
for capacitors: half-life, time constant 

for radioactivity: half-life, decay constant, random, probability 

Revision Notes: exponential decay processes 

 

simple harmonic motion, amplitude, frequency, period, free and forced oscillations, resonance 

Revision Notes: simple harmonic motion, resonance and damping 

Summary Diagrams: A language to describe oscillations, Resonance 

 

relationships of the form dx/dy = –kx , i.e. where a rate of change is proportional to the amount 
present 

Revision Notes: exponential decay processes, differential equation 

 

 

I can sketch, plot and interpret graphs of: 
radioactive decay against time (plotted both directly and logarithmically) 

Revision Notes: exponential decay processes 

Summary Diagrams: Radioactive decay used as a clock, Half-life and time constant 

 

decay of charge, current or potential difference with time for a capacitor (plotted both directly 
and logarithmically) 

Revision Notes: exponential decay processes 

Summary Diagrams: Analogies between charge and water, Exponential decay of charge 

 

charge against voltage for a capacitor as both change, and know that the area under the curve 
gives the corresponding energy change 

Revision Notes: capacitance 

Summary Diagrams: Energy stored by a capacitor 

 

displacement–time, velocity–time and acceleration–time of simple harmonic motion (showing 
phase differences and damping where appropriate) 

Revision Notes: simple harmonic motion, sine and cosine functions 

Summary Diagrams: Graphs of simple harmonic motion 

 

variation of potential and kinetic energy with time in simple harmonic motion 

Revision Notes: simple harmonic motion 

Summary Diagrams: Energy flow in an oscillator 

 

variation in amplitude of a resonating system as the driving frequency changes 

Revision Notes: resonance and damping 

Summary Diagrams: Resonance 
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I can make calculations and estimates making use of: 
iterative numerical or graphical methods to solve a model of a decay equation 

iterative numerical or graphical methods to solve a model of simple harmonic motion 

Revision Notes: exponential decay processes, differential equation 

Summary Diagrams: Step by step through the dynamics, Rates of change, Comparing models 

 

data to calculate the time constant τ = RC of a capacitor circuit 

data to calculate the activity and half-life of a radioactive source 

Revision Notes: exponential decay processes 

Summary Diagrams: Smoothed out radioactive decay, Half-life and time constant 

 

the relationships for capacitors: 

C = Q / V     
I = ΔQ / Δt      
E = (1/2) QV = (1/2) CV2 

Revision Notes: capacitance 

Summary Diagrams: Energy stored by a capacitor 

 

the basic relationship for simple harmonic motion:  

x
m
ka

t
x )(

d
d

2

2
−==  

the relationships x = A sin2πft and x = A cos2πft for harmonic oscillations 

the period of simple harmonic motion:  

k
mT π= 2  

and the relationship F = –kx 

Revision Notes: simple harmonic motion 

Summary Diagrams: A language to describe oscillations, Snapshots of the motion of a simple 
harmonic oscillator, Graphs of simple harmonic motion, Step by step through the dynamics 

 

the conservation of energy in undamped simple harmonic motion:  
2

2
12

2
1

total kxmvE +=  

Revision Notes: simple harmonic motion 

Summary Diagrams: Energy flow in an oscillator 
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Revision Notes 
Back to list of Contents 
 

Capacitance 
Capacitance is charge separated / potential difference, C = Q/V. 

The SI unit of capacitance is the farad (symbol F). 

 
Capacitor symbol

 
 
One farad is the capacitance of a capacitor that separates a charge of one coulomb when the 
potential difference across its terminals is one volt. This unit is inconveniently large. Thus 
capacitance values are often expressed in microfarads (μF) where 1 μF = 10–6 F. 

Relationships 
For a capacitor of capacitance C charged to a potential difference V: 

Charge stored Q = C V. 

Energy stored in a charged capacitor E = ½ Q V = ½ C V2. 
 
Back to Revision Checklist  
 
 

Exponential decay processes 
In an exponential decay process the rate of decrease of a quantity is proportional to the 
quantity remaining (i.e. the quantity that has not yet decayed). 

Capacitor discharge 
For capacitor discharge through a fixed resistor, the current I at any time is given by I = V / R, 
where V = Q / C. Hence I = Q /RC. 
 
Thus the rate of flow of charge from the capacitor is 

RC
Q

t
Q

−==
d
dI

 
where the minus sign represents the decrease of charge on the capacitor with increasing 
time. 

The solution of this equation is 

.e0
RCtQQ −=  

The time constant of the discharge is RC.  

Radioactive decay 
The disintegration of an unstable nucleus is a random process. The number of nuclei δ N that 
disintegrate in a given short time δ t is proportional to the number N present: 
δ N = – λ N δ t, where λ is the decay constant. Thus: 
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.N
t
N

λ−=
δ
δ

 
 
If there are a very large number of nuclei, the model of the differential equation 

N
t
N

λ−=
d
d

 
 
can be used. The solution of this equation is 
 

.e0
tNN λ−=  

 
The time constant is 1 / λ. The half-life is T1/2 = ln 2 / λ. 

Step by step computation 
Both kinds of exponential decay can be approximated by a step-by-step numerical 
computation.  

1. Using the present value of the quantity (e.g. of charge or number of nuclei), compute the 
rate of change.  

2. Having chosen a small time interval dt, multiply the rate of change by dt, to get the 
change in the quantity in time dt. 

3. Subtract the change from the present quantity, to get the quantity after the interval dt. 

4. Go to step 1 and repeat for the next interval dt. 
 
Back to Revision Checklist 
 
 

Differential equation 
Differential equations describe how physical quantities change, often with time or position. 

The rate of change of a physical quantity, y , with time t is written as dy /dt . 

The rate of change of a physical quantity, y , with position x is written as dy /dx . 

A rate of change can itself change. For example, acceleration is the rate of change of velocity, 
which is itself the rate of change of displacement. In symbols: 

⎟
⎠

⎞
⎜
⎝

⎛==
t
s

tt
va

d
d

d
d

d
d

 
which is usually written 

.
d
d

2

2

t
s

 
A first-order differential equation is an equation which gives the rate of change of a physical 
quantity in terms of other quantities. A second-order differential equation specifies the rate of 
change of the rate of change of a physical quantity. 

Some common examples of differential equations in physics are given below. 

Constant rate of change 
The simplest form of a differential equation is where the rate of change of a physical quantity 
is constant. This may be written as dy /dt = k if the change is with respect to time or dy /dx = k 
if the change is with respect to position. 
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An example is where a vehicle is moving along a straight line at a constant velocity u . Since 
its velocity is its rate of change of displacement ds /dt , then ds /dt = u is the differential 
equation describing the motion. The solution of this equation is s = s0 + u t , where s0 is the 
initial distance. 

 

Motion at constant velocity, u

0 t

s
s0

s = s0+ut

 
 

Second order differential equation 
Another simple differential equation is where the second-order derivative of a physical 
quantity is constant.  

For example, the acceleration d2s /dt2 (the rate of change of the rate of change of 
displacement) of a freely falling object (if drag is negligible) is described by the differential 
equation 

g
t
s

−=2

2

d
d

 
where g is the acceleration of free fall and the minus sign represents downwards motion when 
the distance s is positive if measured upwards. 

Then 

2
2
1

0 gtutss −+=  
can be seen to be the solution of the differential equation, since differentiating s once gives 

gtu
t
s

−=
d
d

 
and differentiating again gives 

.
d
d

2

2
g

t
s

−=
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Motion at constant acceleration, – g

0 t

s
s0

s = s0+ut –   gt21
2

u = initial speed

 
 
The simple harmonic motion equation 

x
t
s 2
2

2

d
d

ω−=
 

represents any situation where the acceleration of an oscillating object is proportional to its 
displacement from a fixed point. The solution of this equation is 

)sin( φ+ω= tAs  

where A is the amplitude of the oscillations and φ  is the phase angle of the oscillations. If s = 
0 when t = 0 , then φ  = 0 and so 

).sin( tAs ω=  

If s = A when t = 0, then φ = π / 2 and so 

)cos( tAs ω=  

because 

).cos(
2

sin tt ω=⎟
⎠

⎞
⎜
⎝

⎛ π
+ω
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Sinusoidal curves

+A

0

–A
t

2 
 

s = A sin  t

s

+A

0

–A
t

2 
 

s = A cos  t

s

 

Exponential decay 
The exponential decay equation dy / dt = –λ y represents any situation where the rate of 
decrease of a quantity is in proportion to the quantity itself. The constant λ is referred to as 
the decay constant. Examples of this equation occur in capacitor discharge, and radioactive 
decay. 

The solution of this differential equation is y = y0 e
–λt where y0 is the initial value. The half-life 

of the process is ln 2 / λ. 

 

Exponential decrease

0 t

y

y0

ln2
λ

y = y0e–λt
2
y0

 

Relationships 
Differential equations for: 

1. Constant speed 

 
.

d
d u

t
s

=
 

2. Constant acceleration 
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.

d
d

2

2
g

t
s

−=
 

3. Simple harmonic motion 

 
.

d
d 2

2

2
x

t
s

ω−=
 

4. Exponential decay 

 
.

d
d y

t
y

λ−=
 

 
Back to Revision Checklist 
 
 

Harmonic oscillator 
A harmonic oscillator is an object that vibrates at the same frequency regardless of the 
amplitude of its vibrations. Its motion is referred to as simple harmonic motion. 

The acceleration of a harmonic oscillator is proportional to its displacement from the centre of 
oscillation and is always directed towards the centre of oscillation. 

In general, the acceleration a = – ω2 s, where s is the displacement and ω the angular 
frequency of the motion = 2 π / T, where T is the time period. 

Relationships 
The displacement of a harmonic oscillator varies sinusoidally with time in accordance with an 
equation of the form 

)(sin φ+ω= tAs  
where A is the amplitude of the oscillations and φ is an angle referred to as the phase angle of 
the motion, taken at time t = 0. 

Acceleration a = – ω2 s. 

The angular frequency of the motion ω = 2 π / T. 
 
Back to Revision Checklist 
 
 

Simple harmonic motion 
Simple harmonic motion is the oscillating motion of an object in which the acceleration of the 
object at any instant is proportional to the displacement of the object from equilibrium at that 
instant, and is always directed towards the centre of oscillation (i.e. the equilibrium position). 
 
The oscillating object is acted on by a restoring force which acts in the opposite direction to 
the displacement from equilibrium, slowing the object down as it moves away from equilibrium 
and speeding it up as it moves towards equilibrium.  
 
The acceleration a = F/m. For restoring forces that obey Hooke’s Law,  F = –ks is the 
restoring force at displacement s. Thus the acceleration is given by:  
a = –(k/m)s,  
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The solution of this equation takes the form 

)2(sin φ+π= ftAs where the frequency f is given by ( ) mkf =π 22 , and φ is a phase angle. 
 
Back to Revision Checklist 
 
 

Resonance and damping  
In any oscillating system, energy is passed back and forth between parts of the system: 

1. If no damping is present, the total energy of an oscillating system is constant. In the 
mechanical case, this total energy is the sum of its kinetic and potential energy at any 
instant. 

2. If damping is present, the total energy of the system decreases as energy is passed to 
the surroundings. 

If the damping is light, the oscillations gradually die away as the amplitude decreases. 
 

Damped oscillations

1

0

1

time

Lightly damped oscillations

0

critical damping

time

heavy damping

Increased damping  
 
Forced oscillations are oscillations produced when a periodic force is applied to an oscillating 
system. The response of a resonant system depends on the frequency f of the driving force in 
relation to the system's own natural frequency, f0. The frequency at which the amplitude is 
greatest is called the resonant frequency and is equal to f0 for light damping. The system is 
then said to be in resonance. The graph below shows a typical response curve. 
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oscillator frequency

resonant frequency

0

 
 
Back to Revision Checklist 
 
 

Sine and cosine functions 
Sine and cosine functions express an angle in terms of the sides of a right-angled triangle 
containing the angle. 

Sine and cosine functions are very widely used in physics. Their uses include resolving 
vectors and describing oscillations and waves. 

Consider the right-angled triangle shown below. 

θ
a

o
h

Trigonometry

sin θ =

cos θ =

tan θ =

o
h
a
h
o
a  

The graphs below show how sin θ and cos θ vary with θ from 0 to 2π radians ( = 360° ). Note 
that both functions vary between + 1 and – 1 over 180°, differing only in that the cosine 
function is 90° out of phase with the sine function. The shape of both curves is the same and 
is described as sinusoidal. 
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Sinusoidal curves

+1

0

–1

2π

y = sinθ

y

+1

0

–1

2π

y = cosθ

y

π θ / radians

π
θ / radians

 
 
The following values of each function are worth remembering: 

 0° 30° 45° 60° 90° 180° 

sin θ 0.0 0.5 1 / √2 √3 / 2 1.0 0.0 

cos θ 1.0 √3 / 2 1 / √2 0.5 0.0 –1.0 

 
For angle θ less than about 10°, cos θ ≈ 1, and sin θ ≈ tan θ ≈ θ in radians. 

+r

–r

0 tR 2π
ω

π
ω

time t

θ = ωt

y

y = sin (ωt)

P

circle radius = r

Generating a sine curve

 

 
Consider a point P moving anticlockwise round a circle of radius r at steady speed, taking 
time T for one complete rotation, as above. At time t after passing through the +x-axis, the 
angle between OP and the x-axis, in radians, θ = ω t where ω = 2 π / T. The coordinates of 
point P are x = r cos(ω t) and y = r sin(ω t). The curves of sin θ and cos θ against time t occur 
in simple harmonic motion and alternating current theory. 
 
Back to Revision Checklist 
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Summary Diagrams 
Back to list of Contents  
 

Analogies between charge and water 
 

Storing charge / storing water 
Potential difference depends on the quantity stored in both cases. 
 
Water and electric charge

water

pressure difference
increases as amount
of water behind dam
increases

Electric charge

conducting plates with
opposite charges
concentrated on them potential difference V

increases as amount of charge
separated increases

–Q +Q

Capacitors keep opposite charges separated. The charge is proportional
to the capacitance at a given potential difference

to calculate Q or V:

CV = Q
Q = CV

charge separated per volt

define capacitance:

C = QV

units:

charge Q
potential difference V
capacitance C

coulomb C
volt V
farad F = C V–1

reservoir
filled with
water
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Water running out 
An exponential change arises because the rate of loss of water is proportional to the amount 
of water left. 
 
Exponential water clock

height h
volume of water V pressure difference p

f ine tube to restrict  flow

W hat if... .
volume of water per second flowing
through outlet tube is proportional
to pressure difference across tube,
and the tank has uniform cross
section?

flow rate f = dV
d t

Pressure difference
proportional to height h.
Constant cross section so
height h proportional to volume
of water V

p   V

Rate of flow of water
proportional to pressure
difference

f = dV   p
dt

f low of water decreases water volum e
rate of change of water volume proportional to water volume

dV
dt   –V

t

t ime to half empty is
large if tube res ists
flow and tank has
large cross sec tion

Water level drops exponentially if the rate of flow is proportional to
pressure difference and the cross section of the tank is constant  
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Charge running out 
An exponential change arises because the rate of loss of charge is proportional to the amount 
of charge left. 
 
Exponential decay of charge

What if....
current flowing through resistance is proportional to potential
difference and potential difference is proportional to charge
on each plate of the capacitor?

capacitance C

current I
resistance R

potential difference, V

Potential difference V
proportional to charge Q

V = Q /C

Rate of flow of charge
proportional to potential
difference

I = dQ/dt = V/R

f low of charge decreases charge
rate of change of charge proportional to charge

dQ/dt = –Q/RC

time for half charge
to decay is large if
res istance is large
and capacitance is
large

Charge decays exponentially if the current is proportional to potential
difference, and the capacitance C is constant

Q

t

current I = dQ/dt

charge Q

 
 
Back to Revision Checklist 
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Exponential decay of charge 
 
Exponential decay of charge

What if....
current flowing through resistance is proportional to potential
difference and potential difference is proportional to charge
on capacitor?

capacitance C

current I
resistance R

potential difference, V

Potential difference V
proportional to charge Q

V = Q/C

Rate of flow of charge
proportional to potential
difference

I = dQ/dt = V/R

flow of charge decreases charge
rate of change of charge proportional to charge

dQ/dt = –Q/RC

time for half charge
to decay is large if
resistance is large
and capacitance is
large

Charge decays exponentially if current is proportional to potential
difference, and capacitance C is constant

Q

t

current I = dQ/dt

charge Q

 
 
Back to Revision Checklist 
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Energy stored by a capacitor 
 

Equations for energy stored

E =    Q0V0

E =    CV0
2

E =    Q0
2/C

1
2

1
2

1
2

Energy stored by a capacitor

Energy delivered at p.d. V when a small charge  Q flows  E = V  Q

Energy  E delivered by same charge  Q falls as V falls

Energy delivered = charge   average p.d.

Energy delivered =     Q0 V0

capacitor discharges add up strips to get triangle

V1

V2

V0

V0 /2

 Q  Q Q0
charge Q charge Q

Capacitance, charge and p.d.

Q0 = CV0

V0 = Q0 /C
C = Q/V

Q0V0
1
2

energy
 E
delivered
= V2  Q

energy
 E
delivered
= V1  Q

energy = area =

1
2

The energy stored by a capacitor is   QV
1
2

 
 
Back to Revision Checklist  
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Smoothed out radioactive decay 
 
Smoothed-out radioactive decay

Consider only the smooth form of the average behaviour.
In an interval dt as small as you please:
probability of decay p =   dt
number of decays in time dt is pN
change in N = dN = –number of decays

dN  = –pN
dN = – N dt

time t

 t

 N

 N
 t

Actual, random decay

Simplified, smooth decay

time t

rate of change
= slope

probability p of decay in short time  t is proportional to  t:
p =    t
average number of decays in time  t is pN
 t short so that  N  much less than N
change in N  =  N = –number of decays

 N = –pN
 N = –  N  t   N  = – N

 t

dN
dt=

 dN  = – N
dt

Actual, random decay fluctuates. The simplified model smooths
out the fluctuations

 
 
Back to Revision Checklist 
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Radioactive decay used as a clock 
 
Clocking radioactive decay

Half-life

time t

N0

N
0

/2

N0 /4

N0 /8

t1/2 t1/2 t1/2 t1/2

Activity

time t
t1/2

halves every half-life

slope = activity =
dN
dt

Measure activity. Activity proportional to number N left

Find factor F by which activity has been reduced

Calculate L  so that 2L = F
L = log2F
age = t1/2 L

Radioactive clock

In any time t the number N  is reduced by a constant factor

In one half-life t1/2 the number N  is reduced by a factor 2

In L half-lives the number N is reduced by a factor 2L

(e.g. in 3 half-lives N is reduced by the factor 23 = 8)

number N  of
nuclei halves
every time t
increases by
half-life t

1/2

The half-life of a radioactive isotope can be used as a clock
 

 
Back to Revision Checklist 
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Half-life and time constant 
 
Radioactive decay times

Time constant 1/ 
at time t = 1/ 
N/N0 = 1/e = 0.37 approx.
t = 1/   is the time constant of the decay

Half-life t1/2

0

N0

N0/2

N0/e

dN/d t = –  N N/N0 = e–  t

t = 0 t = t1/2 t = time constant 1/ 

In 2 = loge 2

The half-life t1/2 is related to the decay constant  

N/N0 =     = – exp(–  t1/2)

In    = – t1/2

t1/2 = ln 2 = 0.693
  

1
2

at time t1/2 number N becomes N0/2
1
2

 
 
Back to Revision Checklist 
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A language to describe oscillations 
 
Language to describe oscillations

+A

0

–A
periodic time T
phase changes by 2 

A
angle  t

Sinusoidal oscillation

time t

amplitude A

f  turns per
second

  = 2 f radian per second

2   radian
per turn

Phasor picture

s = A sin  t

Periodic time T,  frequency f, angular frequency  :
f = 1/T  unit of frequency Hz   = 2 f

Equation of sinusoidal oscillation:
s = A sin 2 ft s = A sin  t

Phase difference  /2

s = A sin 2 ft
s = 0 when t = 0

s = A cos 2 ft
s = A when t = 0

t  = 0
sand falling from a swinging pendulum leaves
a trace of its motion on a moving track

A sinusoidal oscillation has an amplitude A, periodic time T, frequency f =    and a definate phase1
T  

 
8Back to Revision Checklist  
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Snapshots of the motion of a simple harmonic oscillator 
 
Motion of a harmonic oscillator

large force to left

large displacement to right

zero velocity

mass m

displacement
against time

velocity
against time

force
against time

right

left

small displacement to right

small velocity
to left

mass m
small force to left

right

left

large velocity
to left

mass m
zero net force

right

left

small displacement to left

small
velocity

mass m
small force to right

right

left

large displacement to left

mass m
large force to right

zero velocity
right

left

Everything about harmonic motion follows from the restoring force
being proportional to minus the displacement

 
 
Back to Revision Checklist 
 
 



10 Creating models 

Advancing Physics A2 24 

Graphs of simple harmonic motion 
 
Force, acceleration, velocity and displacement

If this is how the displacement varies
with time...

... the velocity is the rate of change
of displacement...

... the acceleration is the rate of
change of velocity...

...and the acceleration tracks the force
exactly...

... the force is exactly opposite to
the displacement...

Phase differences Time traces varies with time like:

 /2 = 90 

 /2 = 90 

  = 180 

zero

displacement s

force F  = –ks

displacement s

cos 2 ft

same thing

–sin 2 ft

–cos 2 ft

–cos 2 ft

cos 2 ft

acceleration =  F/m

ve locity v

Graphs of displacement, velocity, acceleration and force against time have similar shapes but
differ in phase  

 
Back to Revision Checklist 
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Step by step through the dynamics 
 
Dynamics of a harmonic oscillator

How the graph starts

force changes
velocity

0

time t

 t

zero initial
velocity

velocity would stay
zero if no force

How the graph continues

force of springs accelerates mass towards centre,
but less and less as the mass nears the centre

time t

0

trace straight
here because no
change of
velocity

no force at centre:
no change of velocity

trace curves
inwards here
because of
inwards
change of
velocity

change of velocity
decreases as
force decreasesnew velocity

= initial velocity
+ change of
velocity

Constructing the graph

if no force, same velocity
and same change in
displacement
plus
extra change in
displacement from
change of velocity due
to force

= –(k/m) s ( t)2

change in displacement = v  t

 t

 t

extra displacement
=  v  t

change of velocity  v
= acceleration    t
 v = –(k/m) s  t

because of springs:
force F = –ks

acceleration = F/m
acceleration = –(k/m) s

Health warning! This simple (Euler) method has a flaw. It always changes the
displacement by too much at each step. This means that the oscillator seems
to gain energy!

extra displacement
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Elastic energy 
The relationship between the force to extend a spring and the extension determines the 
energy stored. 
 
Energy stored in a spring

no force
work F1  x
force F1

 x

larger force

extension x

area below graph
= sum of (force  
change in displacement)

extra area
F1  x

total area
    Fx

2
1

unstretched

F1

Energy supplied

energy stored in stretched
spring =     kx2

2
1

small change  x
energy supplied = F  x

stretched to extension x by force F:
energy supplied =     Fx2

1

spring obeys
Hooke’s law: F = kx

F = 0
x = 0

F = kx

Energy stored in a stretched spring is   kx2
2
1

0
0

x
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Energy flow in an oscillator 
The energy sloshes back and forth between being stored in a spring and carried by the 
motion of the mass. 
 

Energy flow in an oscillator

displacement

time

time

s = A sin 2πft

PE =    kA2 sin22πft

0

0

potential energy
=    ks21

2

potential energy

energy in stretched spring

energy carried by moving mass

time

time

0

0

kinetic energy
=    mv21

2

velocity

mass and
spring
oscillate

vmax
A

Avmax vmax

The energy stored in an oscillator goes back and forth between stretched spring and moving
mass, between potential and kinetic energy

from spring to
moving mass

from moving
mass to spring

from moving
mass to spring

from spring to
moving massenergy in

stretched spring

energy in
moving mass

kinetic energy

vmax = 2πfA

v = vmax cos 2πft

KE =    mvmax cos22πft21
2

1
2
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Resonance 
Resonance occurs when driving frequency is equal to natural frequency. The amplitude at 
resonance, and just away from resonance, is affected by the damping. 
 
Resonant response

10

5

0
1

Example: ions in oscillat ing electric field

ions in a crystal
resonate and
absorb energy

Oscillator driven by oscillating driver

electric
field

+ – + –

low damping:
large maximum response
sharp resonance peak

frequency/natural frequency
0 0.5 1 1.5 2.0

10

5

0
1

frequency/natural frequency
0 0.5 1 1.5 2.0

more damping:
smaller maximum response
broader resonance peak

Resonant response is at maximum when the frequency of a driver is equal to the natural frequency
of an oscillator

narrow range
at    peak
response

1
2

wider range
at    peak
response

1
2
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Rates of change 
 
Changing rates of change

change in ds = d(ds) = dv dt

= a dt2

The first derivative ds/dt says how steeply the graph slopes.
The second derivative d2s/dt2 says how rapidly the slope changes

dt
ds = v dt

v =  ds
dt

s

t

dt
ds = v  dt

dt

ds = (v + dv) dt

a =  dv
dt

t

s

dt
v dt

dt
v dt

dv dt

change in ds = d(ds) = dv dt = a dt2

s

t

new slope = new rate of change of
           displacement

= new velocity (v + dv)

new ds = (v + dv) dt

dv = a dt

slope = rate of change of displacement
= velocity v

d ds d2s
dt dt dt 2 = a( )=

rate of change
of velocity

rate of change
of slope

=
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Comparing models 
 
Simple models compared

Exponential growth Exponential decay
dQ / dt = + kQ dQ / dt = – kQ

positive
feedback

time

negative
feedback

time

population+

k

population–

k

Harmonic oscillator d2s / dt2 = – (k / m)s or v = ds / dt
a = dv / dt
a = – (k / m)s

acceleration
a = F / m velocity displacement

spring
constant

kforce
F = – ksmass m –

time

rate of change
of velocity

rate of change of
displacement

rate of change of
population

rate of change of
population
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