Revision Guide for Chapter 11

Contents
 Student's Checklist

Revision Notes

Momentum 4
Newton's laws of motion 4
Gravitational field
Gravitational potential 6
Motion in a circle 7
Summary Diagrams (OHTs)
Conservation of momentum 8
Collisions from different viewpoints 9
Examples of collisions 11
Momentum and force 13
Jets and rockets 14
Field direction and equipotentials 15
Centripetal acceleration 16
Satellites and Kepler's third law 19

Student's Checklist

Back to list of Contents

I can show my understanding of effects, ideas and relationships by describing and explaining cases involving:

I can use the following words and phrases accurately when describing effects and observations:

Momentum	
Revision Notes: Momentum	
kinetic energy and potential energy See Revision Guide Chapter 9: kinetic energy; potential energy	
gravitational field, gravitational potential	

Revision Notes: Gravitational field; Gravitational potential

can sketch, plot and interpret:

graphs showing the variation of a gravitational field with distance, and know that the area under the graph shows the change in gravitational potential			
Revision Notes: Gravitational field		\quad	graphs showing the variation of gravitational potential with distance, and know
:---			
that the tangent to the curve gives the gravitational field strength			
Revision Notes: Gravitational potential	\quad	diagrams illustrating gravitational fields and the corresponding equipotential	
:---			
surfaces			
Summary Diagrams: Field direction and equipotentials			

I can make calculations and estimates involving:

kinetic energy $1 / 2 m v^{2}$, gravitational potential energy change $m g h$ energy transfers and exchanges using the idea: work done $\Delta E=F s \cos \theta$, (no work is done when F and s are perpendicular) See Revision Guide Chapter 9: Work; kinetic energy; potential energy; free fall; projectile	
momentum $p=m v$ and $F=\Delta(m v) / \Delta t$ Revision Notes: Momentum; Newton's Laws of motion	
circular and orbital motion: $a=v^{2} / r ; F=m v^{2} / r$ Revision Notes: Motion in a circle Summary Diagrams: Centripetal acceleration;	
gravitational fields: $F_{\text {grav }}=-\frac{G m M}{r^{2}}, g=\frac{F_{\text {grav }}}{m}=-\frac{G M}{r^{2}}$ gravitational potential energy $-\frac{G m M}{r}$ gravitational potential $V_{\text {grav }}=\frac{E_{\text {grav }}}{m}=-\frac{G M}{r}$ Revision Notes: Gravitational field; Gravitational potential Summary Diagrams: Field direction and equipotentials;	

Revision Notes

Back to list of Contents

Momentum

Momentum is mass x velocity. Momentum is a vector quantity. The SI unit of momentum is $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$.

Newton's second law defines force as the rate of change of momentum
$F=\frac{\Delta(m v)}{\Delta t}$.
If the mass is constant this can be expressed as 'force $=$ mass \times acceleration' because acceleration is rate of change of velocity.

The change of momentum of an object acted on by a force is:
$\Delta(m v)=F \Delta t$.
The product $F \Delta t$ is called the impulse of the force.
The thrust on a rocket of the jet of gases that it ejects is equal to the rate at which the jet carries away momentum. This is given by the mass ejected per second x the velocity of the jet.

When two objects interact, for example in a collision, one object loses an amount of momentum and the other object gains an equal amount. The total momentum of the two objects is the same after the interaction as before. This is the principle of conservation of momentum.

Since the time of interaction Δt is the same for both objects, the forces acting on the objects are equal and opposite. This is Newton's Third Law. It is a consequence of the conservation of momentum.

Back to Student's Checklist

Newton's laws of motion

Newton's first law of motion states that an object remains at rest or moves with constant velocity unless acted on by a resultant force.

Newton's first law defines what a force is, namely any physical effect that is capable of changing the motion of an object. If an object is at rest or in uniform motion, either no force acts on it or forces do act on it and the resultant force is zero.

Newton's second law of motion states that the rate of change of momentum of an object is equal to the resultant force on the object.

That is, $F=\mathrm{d} p / \mathrm{d} t$, where $p=m v$ is the momentum of an object acted on by a resultant force F.

For an object of constant mass m, acted on by a force F
$F=m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m a$

The SI unit of force is the newton $(\mathrm{N}) .1 \mathrm{~N}$ is the force that gives a 1 kg mass an acceleration of $1 \mathrm{~m} \mathrm{~s}^{-2}$.

Newton's third law of motion states that when two objects interact, there is an equal and opposite force on each.

Back to Student's Checklist

Gravitational field

The strength g of a gravitational field at a point is the gravitational force per unit mass acting on a small mass at that point. Gravitational field strength is a vector quantity in the direction of the gravitational force.

The SI unit of gravitational field strength is $\mathrm{N} \mathrm{kg}^{-1}$ or equivalently $\mathrm{m} \mathrm{s}^{-2}$.
The force F on a point mass m at a point in a gravitational field is given by $F=m g$, where g is the gravitational field strength at that point.

Close to the surface of the Earth, the gravitational field is almost uniform. The lines of force are parallel and at right angles to the Earth's surface.

A uniform gravitational field

On a large scale, the gravitational field is radial.
Newton's law of gravitation states that the force of gravitational attraction F of a mass M on another mass m obeys an inverse square law:
$F=-\frac{G M m}{r^{2}}$
where r is the distance from the centre of M to m and the minus sign indicates that the force acts towards the mass M. The measured value of the Universal Gravitational Constant G is $6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$.

The gravitational field strength $g=F / m=-G M / r^{2}$ at distance r from the centre of the mass M.

Variation of g with distance from the centre of the Earth

Back to Student's Checklist

Gravitational potential

The gravitational potential at a point is the potential energy per unit mass of a small object placed at that point. This is the work done per unit mass to move a small object from infinity to that point.

The gravitational potential energy E_{P} of a point mass m is given by $E_{P}=m V_{G}$, where V_{G} is the gravitational potential at that point.

The SI unit of gravitational potential is Jkg^{-1}. Gravitational potential is a scalar quantity.
An equipotential is a surface of constant potential. No change of potential energy occurs when an object is moved along an equipotential. The lines of force are therefore always perpendicular to the equipotential surfaces.

The gravitational field strength at a point in a gravitational field is the negative of the potential gradient at that point. In symbols $g=-\mathrm{d} V_{\mathrm{G}} / \mathrm{d} x$.

In an inverse square gravitational field, the field strength is:
$g=-\frac{G M}{r^{2}}$.
and the gravitational potential is:
$V_{G}=-\frac{G M}{r}$

Variation of gravitational potential with distance from the centre of a spherical body

Back to Student's Checklist

Motion in a circle

An object moving in a horizontal circle at constant speed changes its direction of motion continuously. Its velocity is not constant because its direction of motion is not constant. The resultant force is directed towards the centre of the circle. It is called the centripetal force.

For an object moving at constant speed v along a circular path of radius r, the acceleration towards the centre is:
$a=\frac{v^{2}}{r}$
and the centripetal force F acting on it is:
$F=m a=\frac{m v^{2}}{r}$
where m is the mass of the object.
The centripetal force does no work on the moving mass because the force is always at right angles to the direction of motion. The energy of the motion is therefore constant.

The time T taken to move once round the circular path is

$$
T=2 \pi r / v
$$

For a proof that $a=\frac{v^{2}}{r}$ see Summary diagrams: $\underline{\text { Centripetal acceleration }}$

Back to Student's Checklist

Summary Diagrams (OHTs)

Back to list of Contents

Conservation of momentum

Conservation of momentum $p=m v$

Before collision:

$$
[\text { total momentum } \boldsymbol{p}]_{\text {before }}=\left[m_{1} \boldsymbol{v}_{1}+m_{2} \boldsymbol{v}_{2}\right]_{\text {before }}
$$

After collision:

$[\text { total momentum } \boldsymbol{p}]_{\text {after }}=\left[m_{1} \boldsymbol{v}_{1}+m_{2} \boldsymbol{v}_{2}\right]_{\text {after }}$

During collision: momentum $\Delta \boldsymbol{p}$ goes from one mass to the other

Changes of velocity:

$$
\begin{aligned}
& m_{1} \Delta \boldsymbol{v}_{1}=-\Delta \boldsymbol{p} \\
& m_{2} \Delta \boldsymbol{v}_{2}=+\Delta \boldsymbol{p}
\end{aligned} \quad \text { therefore: }-\frac{\Delta \boldsymbol{v}_{2}}{\Delta \boldsymbol{v}_{1}}=\frac{m_{1}}{m_{2}}
$$

Momentum just goes from one object to the other. The total momentum is constant

Back to Student's Checklist

Collisions from different viewpoints

Two equally massive spacecraft dock together and join. The collision is seen from two different moving points of view. Momentum is conserved from both points of view

Two crafts approach one another and dock together

View 2 Observation craft travels alongside Mir

The same event looks different from two different points of view

Momentum is different in the two views of the same event, but in each case: momentum after = momentum before

Back to Student's Checklist

Examples of collisions

Here are six collisions. Notice that the total momentum before is always equal to the total momentum after.

unequal masses, inelastic collision	total momentum
before	
	before \qquad
during	
after	after
unequal masses, elastic collision	total momentum
before	
	before
during	after \rightarrow
after	
unequal masses, elastic collision	total momentum
before	
velocity v velocity zero	before \qquad
during	
	after
velocity much less than v velocity up to $2 v$	

Back to Student's Checklist

Momentum and force

Thinking about momentum and forces

From symmetry and invariance (looking differently can't change events):

1. momentum is conserved
2. define mass from change of velocity in collision
3. define force as rate of change of momentum, giving $F=m a$
4. forces on interacting objects act in equal and opposite pairs

Back to Student's Checklist

Jets and rockets

Jets and rockets

[^0]
Field direction and equipotentials

Centripetal acceleration

Acceleration towards centre of circular orbit

velocity turns through angle $\Delta \theta$ as planet goes along circular path in short time Δt
radius turns through $\Delta \theta$
velocity turns through $\Delta \theta$

$\operatorname{arc} \mathrm{AB}=$ distance in time
change of velocity Δv Δt at speed v towards centre of circle $\operatorname{arc} \mathrm{AB}=v \Delta t$

multiply by $v: v \frac{v \Delta t}{r}=\Delta v$
divide by $\Delta t: \quad \frac{v^{2}}{r}=\frac{\Delta v}{\Delta t}=$ acceleration

$$
\text { Acceleration towards centre }=\frac{v^{2}}{r}
$$

Back to Student's Checklist

Kepler: Geometry rules the Universe

Law 1: a planet moves in an ellipse with the Sun at one focus

Orbit of Mars an ellipse with Sun at a focus

Ellipse: curve such that sum of a and b is constant

Kepler: Geometry rules the Universe

Law 2: the line from the Sun to a planet sweeps out equal areas in equal times

Speed of planet large near Sun, smaller away from Sun

Areas swept out in same time are equal

Kepler: Geometry rules the Universe

Law 3: square of orbital time is proportional to cube of orbital radius

Back to Student's Checklist

Satellites and Kepler's third law

The example of a geostationary satellite is used to derive Kepler's third law.

Back to Student's Checklist

[^0]: Back to Student's Checklist

